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AN EXTENSION OF THE QZ ALGORITHM FOR SOLVING THE 

GENERALIZED MATRIX EIGENVALUE PROBLEM* 

By Robert C. Ward 
Langley Research Center 

SUMMARY 

An algorithm called the combination shift QZ algorithm is presented for solving the 
generalized matrix eigenvalue problem. This new algorithm is an  extension of Moler and 
Stewart's QZ algorithm with some added features for saving time and operations. Also, 
some additional properties of the QR algorithm which were not practical to implement in 
the QZ algorithm can be generalized with the combination shift  QZ algorithm. Numerous 
test  cases are presented to give practical application tests for the algorithm. Based on 
the results presented in this paper, this algorithm should be preferred over existing 
algorithms which attempt to solve the class of generalized eigenproblems where both 
matrices are singular o r  nearly singular. 

INTRODUCTION 

There are numerous problems which occur frequently in the physical sciences that 
require solving the generalized eigenvalue problem 

AX = XBx (1) 

for X and x where A and B a r e  n X n  real  matrices, X is a scalar,  and x is 
a n X 1 vector. To mention one example, it is well known (see Lancaster (ref. 1)) that 
the equations of motion for many mechanical and electrical systems may be written in the 
matrix form 

Ap + BP + Cp = f (2) 

where A, B, and C are n X n  real matrices, and p and f a r e  time-dependent 
n X 1 vectors. If a system with no damping (B = 0), no forcing function (f = 0), and 
solutions of the form p(t) = e% (sinusoidal solutions) where x is independent of 
time is considered, then in te rms  of X and x, equation (2) becomes 

The basic information presented herein is a part of a thesis which will be offered * 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in 
Applied Mathematics, University of Virginia, Charlottesville, Virginia. 

, 



c x  = -X2Ax (3) 

which is the generalized eigenvalue problem in -A2. If the system is damped, the result- 
ing equation can be transformed by the equations 

A x = y  (4) 

M y  + By + CX = 0 

into the block 2n X 2n matrix generalized eigenvalue problem 

I rc -B 

When solving the generalized eigenvalue problem, the roles of A and B can be 
reversed by solving for the reciprocals of the eigenvalues. That is, one could solve the 
problem 

BX = PAX (7) 

where the eigenvalues X of the original problem (eq. (1)) a r e  given by 

An infinite eigenvalue of equation (1) is defined as a corresponding zero eigenvalue of 
equation (7). 

In many application cases, A and B of equation (1) have some special properties 
which determine the type of eigenvalues present and influence the selection of an algorithm 
for solving the problem. First, consider the cases when B is well-conditioned with 
respect to inversion. When A is symmetric and B is positive definite as quite often 
occurs in. physical applications, all the eigenvalues a r e  real; Martin and Wilkinson (ref. 2) 
describe an algorithm which reduces th i s  problem to the standard symmetric eigenvalue 
problem Pz = Xz. In addition, if A and B have band structure, Crawford (ref. 3) 
describes a modification to Martin and Wilkinson's algorithm to take advantage of the 
band matrices. Also, an algorithm by Golub, Underwood, and Wilkinson (ref. 4) using 
Lanczos method solves the band problem. If A and B do not have special proper- 
ties, the generalized eigenvalue problem can be solved by solving the standard problem 
B-lAx = Ax. Normally, one would not want to form B-lA when A and B have spe- 
cial properties usable by algorithms. For example, in the preceding case where A was 
symmetric and B was positive definite, the problem was  transformed into a standard 



symmetric eigenvalue problem which is faster and numerically more stable than the non- 
symmetric problem B-lAx = Ax. 

Now, consider the more complicated cases when B is ill-conditioned. When A 
is symmetric and B is positive semidefinite or  positive definite but ill-conditioned, 
Fix and Heiberger (ref. 5) describe an algorithm for solving this problem which depends 
on determining the rank of several submatrices. This case is interesting in that the 
spectrum consists of both stable and unstable real  eigenvalues and there exists the possi- 
bility of every scalar being an eigenvalue. Unstable eigenvalues a r e  those which a r e  sen- 
sitive to small changes in the matrix elements of A and B and thus cannot be computed 
accurately by a normal computational procedure. In general, rank determination is a dif- 
ficult problem to solve on a computer; thus, Fix and Heiberger's algorithm runs into diffi- 
culty when there is not a clear separation between the stable and unstable eigenvalues. 
For a general ill-conditioned B matrix, Peters and Wilkinson (ref. 6) describe an algo- 
rithm which again depends on rank determination. Moler and Stewart (ref. 7) describe an 
algorithm which solves the generalized eigenvalue problem for arbitrary real matrices A 
and B by use of unitary transformations. This generalization of the double shift QR 
(ref. 8) is called the QZ algorithm and is particularly effective for the cases when B is 
singular o r  nearly singular. The algorithm presented in th i s  paper is a combination of 
the QZ and a generalization of the single shift implicit QR and is referred to as the com- 
bination shift QZ algorithm. This algorithm is also effective on the singular or  nearly 
singular B cases and is particularly effective on cases where a large number of real 
eigenvalues a r e  expected, such as A symmetric and B positive semidefinite. 

SYMBOLS 

A,B,C n by n matrices 

A',B',C* n by n matrices, next iterate of A, B, and C, respectively 

X,E lower right 2 by 2 submatrices of A and B, respectively 

aij ,bij i , j  elements in matrix A and B, respectively 

scalars 

e n by n matrix related to C 

Di,Ei block diagonal matrices 

, 3 



P,X n by 1 vectors 

I identity matrix 

k,t,m,q index arguments for derivation of test cases 

n size of matrices A and B 

Q,Z n by n orthogonal matrices 

Q' ,Z' ,Z" n by n orthogonal matrices 

Qi,Zi ith n by n orthogonal matrix in a sequence 

Xi ,Yi  n by 1 vectors associated with eigenvalue h i  

basic machine roundoff e r r o r  €0 

scalars,  usually small numbers 

0 shift in single shift implicit QZ iteration 

shifts in double shift Q Z  iteration O2 

Hermitian of [ ] 

c IT transpose of [ ] 

QZ ALGORITHM 

Since a detailed description of the QZ algorithm is given in reference 7, only a brief 
summary will  be given here for completeness. The algorithm is an iterative method for 



computing the decomposition guaranteed in the following theorem from reference 9: 

Theorem: There are unitary matrices Q and Z so that QAZ and QBZ are both upper 
triangular. 

If the decomposition can be accomplished, then the eigenvalues and eigenvectors 
are easily extracted by 

xi = zyi 

where ai and pi are the diagonal elements of the QAZ and QBZ matrices, respec- 
tively, and y. are the eigenvectors of the triangular system QAZyi = XiQBZyi. 

1 

Major Steps of QZ Algorithm 

There are four major steps in  the algorithm. 

(1) Reduce A to upper Hessenberg form and at the same time reduce B to upper 
triangular form. 

(2) Use  a generalization of the double shift QR to put A in quasi-triangular form 
(upper block triangular form with 1 X 1 or  2 X 2 diagonal blocks) while keeping B in 
upper triangular form. 

(3) Reduce A to upper triangular form and keep B in upper triangular form. 

(4) Find the eigenvectors of the triangular system and back transform them to the 
original problem. 

Step 1 is irzitiated by transforming B into upper triangular form by premultiplying 
by a unitary matrix, denoted Q', made up of a sequence of Householder reflections. Then 
Q'A is put in upper Hessenberg form by annihilating one element at a time in the order 
given below on a 5 X 5 example: 

, 

X 

X 

~ 

Q'A 

X X 

X X 

X X 

x5 x 

x4 x6 
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After each annihilation, for example by Qi, the current B matrix is put back in triangu- 
lar form by a postmultiplication with a Householder reflection, for example Zi. This 
reflection does not affect the zeros  introduced in the current A matrix. Thus, in the 
5 X 5 matrix example, QAZ and QBZ would be upper Hessenberg and upper triangular, 
respectively, where Q = Q6Q5Q4Q3Q2Q1Q' and Z = z1z2z3z4z5z6 .  

eigenvalue problem AB-lx = Ax without forming B-'. Since th is  step is the iterative 
step that the combination shift QZ algorithm alters,  a more detailed description of this 
iteration is given later. For a complete description, the interested reader should con- 
sult reference 7. 

Step 2 is the generalization of the double shift QR algorithm applied to the standard 

Step 3 involves one QZ transformation, that is, one premultiplication by a unitary 
matrix Q and one postmultiplication by a unitary matrix Z on the quasi-triangular 
A and triangular B to put both matrices in triangular form. E a 2 X 2 diagonal block 
of A corresponds to a complex conjugate eigenvalue pair, complex arithmetic will be 
required in th i s  step. 

Step 4 is accomplished by solving the reduced triangular problem for its eigenvec- 
to rs  by a back-substitution process similar to the one used by Peters  and Wilkinson 
(ref. 10) in the procedure "hqr2 ." The Z transformations (postmultiplication matri- 
ces) a r e  accumulated and applied to the eigenvectors of the reduced system to obtain the 
eigenvectors of the original system. Recently, Kaufman (ref. 11) has pointed out that it 
is advantageous to solve the transposed problem for the left eigenvectors and thus accu- 
mulate the Q transformations for back transforming the triangular system vectors. 
This advantage can be seen in the discussion of the second step in the QZ algorithm. 

Step 2 of QZ Algorithm 

The iteration is motivated by assuming that B is nonsingular and by examining 
the double shift QR algorithm for  C = ABW1. Recall that A is upper Hessenberg and 
B is upper triangular as a result of step 1; thus, C is also upper Hessenberg. 

Suppose one iteration of the double shift QR with shifts al and a2 is applied to 
C.  Then a unitary matrix Q is found that makes the matrix QCQH upper Hessenberg, 
where QH denotes the Hermitian of Q, and the first row of Q is the first row of the 
orthogonal matrix which annihilates all the elements but the first in  the first column of 
(C - alI)(C - a21). The next iterate C' is then defined as 

C' = QCQH I 

Consider what happens if a special form of the identity, that is, ZZH where Z 
is unitary is inserted in the matrix equation (1) to give 

, 
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AZ(ZHx) = ABZ(ZHx) 

Then 

Since the unitary matrix Z does not change C or C', Z could be used effectively to 
keep A upper Hessenberg and B upper triangular during the iteration and not destroy 
the zeros introduced in step 1.  

Suppose the matrix Q in equation (11) is known and the matrix Z which keeps 
the current A and B in the proper form is known: Define A' and B' by 

A' = QAZ (14) 

B' = QBZ (1 5) 

and then 

Thus, if Q and Z can be determined without forming B-1, then the next iterates, A' 
and B', can be determined by equations (14) and (15). 

The QZ iteration must then do two things. First, determine the correct first row 
of Q. Second, determine Q and Z so that Q retains the correct f i rs t  row, QAZ is 
upper Hessenberg, and QBZ is upper triangular. 

As mentioned earlier,  the f i rs t  row of Q is the f i rs t  row of the orthogonal matrix 
which annihilates all the elements but the first in the first column of (AB-1 - ulI)(AB-l - 
a$). Since A is upper Hessenberg and B is upper triangular, the f i rs t  column of 
(AB-1 - v1I)(AB-l - 0 I is completely determined by 01, 9, and the first two columns 
of AB- l .  Only the nonsingularity of the upper 2 by 2 submatrix of B,  that is, bl l  and 

b22 
and Stewart show how to handle the case of the singular o r  nearly singular submatrix. 

The first column of (AB-1 - alI)(AB-l - 021) is called "the fictitious zeroth column" 
of AB-l  and is easily computed. The first column of AB-l  has two nonzero elements 
and the second column has three. The equations for these elements are 

2 )  

nonzero, is required to find these columns. This is really no restriction since Moler 

, 
(18) 
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a12 "llb12 
b22 bllb22 

(AB-1)12 = - - 

"22 "21b12 
b22 bllb22 

(AB-1)22 = -- 

Since the rate of convergence for the QR algorithm is determined by the ratio of consecu- 
tive distinct eigenvalues, shifts are employed to make this ratio as small as possible. 
The shifts o1 and u2 a r e  chosen to be the two zeros of the equation 

det(A - u g )  = 0 

where 

Ya,- 1 ,n- 1 

L 'n,n- 1 

0 

and n is the order of the current A and B matrices. These shifts are not explicitly 
computed, but techniques similar to those used in "hqr2" (ref. 10) are applied instead. 
By denoting n - 1 by m,  the three nonzero elements of the zeroth column of AB-1 
a r e  computed by the following formulas: 

a3 2 
"30 = 5 



Note that ala, a20, and "30 are all real even if the roots (shifts) of equation (22) are 
complex. This is an important feature of the QZ algorithm. 

After a10, a20, and "30 have been computed, the iteration involves only premul- 
tiplying and postmultiplying the A and B matrices by Householder transformations, 
the proper elements being annihilated each time. Since there are only three nonzero ele- 
ments in the "zeroth" column, only the first three elements of the first row of Q are 
nonzero. Being illustrated on 6 by 6 matrices, A and B have the following form after 
applying the Householder transformation Q1 for annihilating a20 and a30: 

- 
X 

X 

X 

X 

X 

X 
2 

QIA 

x x x x  

x x x x  

x x x x  

o o x x  

o o o x  

0 0 0 0  - 

- 
X 

0 

0 

0 

0 

0 - 

X 

X 

X I  

0 

0 

0 

- 
X 

X 

X 

X 

X 

X - 

QIB 

The algorithm must now reduce QIA to upper Hessenberg and Q1B to upper triangu- 
lar without affecting the first row. This is done by postmultiplying by the Householder 
transformation Z; which annihilates the elements denoted by superscript 1 and then by 
the Householder transformation Zy which annihilates the element in position denoted by 
superscript 2. Letting Z1 = Z;Z'; yields the following forms: 

&lAZ1 . QIBZ1 

, 9 



Now, annihilating the elements denoted by superscript 1 with a Householder transforma- 
tion Q2 yields 

- 
X 

X 

X 

X 

X 

X - 

Q2QlAZ1 Q2QlBZ1 
_.) 

X 

X 

X 

X 

X 

X 

7 

X 

0 

0 

0 

0 

0 - 

X 

X 

X 

X 

0 

0 

- 
X 

X 

0 

0 

0 

0 - 

X 

X 

X 

X 

0 

0 

X 

X 

X 

X 

X 

0 

X 

X 

X 

X 

X 

X 

X 

X 

X2 

X 1  

0 

0 

X 

X 

X 

X 1  

0 

0 

X X 

X 

X 

X 

X 

0 

Postmultiplying by Z2, a product of Householder transformations annihilating the ele- 
ments in the given order,  reduces the current B matrix to triangular form. Then pre- 
multiplying by Q3 annihilates the nonzero elements outside the Hessenberg form in the 
second column of Q2Q1AZ1Z2. This procedure continues until all the unwanted nonzero 
elements a r e  pushed down to the lower right-hand corner and a Hessenberg matrix A’ 
and an upper triangular matrix B’ remain. 

By letting the elements of the current transformed A and B matrices be denoted 
by aij and bij, respectively, the iteration can be summarized by the following outline: 

(1) Compute alO, “20, and a30 by equations (23), (24), and (25) 

(2) For k = 1, 2, . . ., n - 2, 

and ak+2,k-1 (a) Determine Qk to annihilate ak+l,k-l 

(b) Determine ~k to annihilate bk+2,k+l and bk+2,k 
(c) Determine Z; to annihilate bk+l,k 

(3) Determine Qn-l to annihilate an,n-2 

(4) Determine Zn-l to annihilate bn,n- 

The operation count (only operations of the highest order of n are counted) for one 
double shift iteration is 13n2 multiplications, 13112 additions, and 3n square roots. 
If the eigenvectors are required, then the Z matrices must be accumulated, which adds 
8n2 more multiplications and 8n2 more additions per iteration. E the transposed prob- 
lem is solved, then the Q matrices are accumulated and add 5n2 more multiplications 
and 5n2 more additions per iteration instead of 8n2. 

10 



COMBINATION SHIFT QZ ALGORITHM 

The combination shift QZ algorithm is basically the QZ algorithm with two improve- 
ments which take advantage of some opportunities for saving time and operations. Steps 1, 
3,  and 4 are not altered by the new algorithm. Thus, the iterative step which is the heart 
of the algorithm is the only step affected. 

Step 2 was the generalization of the double shift QR. The double shift QR is used 
to solve the standard eigenvalue problem ABW1, = Xx because of the possibility of com- 
plex conjugate shifts o1 and 02. If the shifts a r e  complex, the double shift version 
allows the continuation of the use of real  arithmetic,,as pointed out earlier. However, 
if the shifts a r e  real ,  this feature of the double shift version is no longer an advantage. 
Thus, a generalization of the single shif t  implicit QR algorithm might have some advan- 
tages when real  shifts a r e  encountered. After a discussion of this generalization and 
one of its properties that can be utilized, the second step of the new algorithm will be 
explained. 

Single Shift Implicit QZ Iteration 

Similar to the double shift generalization, the single shift implicit QZ iteration is 
motivated by assuming B is nonsingular and by examining the single shift implicit QR 
algorithm for C = AB-l. Recall that C is an upper Hessenberg matrix because of 
step 1. 

applied to C. Then a matrix Q is found so that the matrix QCQH is upper 
Hessenberg and the first row of Q is the first row of the orthogonal matrix which 
annihilates all the elements except the first in the first column of the matrix (C - 01). 
The next iterate C' is then defined as 

Suppose one iteration of the single shift implicit QR algorithm with shift o is 

A s  was the case in the double shift, A and B can be postmultiplied by a unitary 
matrix Z without altering C or  C' . Thus again this technique can be used to keep 
A upper Hessenberg and B upper triangular during the iteration. Also by finding the 
proper matrices Q and Z, the next iterates A' and B' can be found without explic- 
itly forming B- l  by using the equations 

A' = QAZ (27) 

B' =QBZ (28) 

, 11 



Thus, to perform one single shift implicit QZ iteration, the algorithm must do two 
things. First, determine the correct first row of Q. Second, determine Q and Z so 
that Q retains the correct first row, QAZ is upper Hessenberg, and QBZ is upper 
triangular. 

the elements except the first in the first column of (AB-1 - 01). Since A is upper 
Hessenberg and B is upper triangular, the first column of (AB-l - 01) is completely 
determined by 0, all, aZ1, and bll. In fact, the first column of (AB-1 - GI), called 
the fictitious zeroth column, has as its first two elements 

The first row of Q is the first row of the orthogonal matrix which annihilates all 

all a =- -  
lo bll 

with the remaining elements all zero. Thus, a nonzero bll is the only requirement on 
the nonsingularity of B .  If b l l  is zero, then a deflation can be carried out to reduce 
the order of the working matrices A and B.  This procedure will  be discussed later. 

The second part is very similar to the second part  of the double shift iteration. 
Premultiplication and postmultiplication by Householder transformations a r e  alterna- 
tively used to annihilate the proper elements to reduce A to upper Hessenberg form 
and B to upper triangular form without affecting the first row. Let Q1 be the uni- 
tary matrix which annihilates aZO; that is, the first row of Q1 is the desired first 
row for Q. Then QIA and QIB have the following form on a 5 by 5 example: 

QIA 

x x x  

x x x  

x x x  

o x x  

o o x  

QIB 

x x x x x  

x x x x x  

o o x x x  

o o o x x  

o o o o x  
- 

Now, Q1B must be returned to upper triangular form while QIA is kept in upper 
Hessenberg form. Postmultiplying by Z 1  to annihilate the element in the b21 posi- 
tion yields 

12 



- 
X 

X 

X 

0 

0 - 

QIAZ1 
1 

X 

X 

X 

X 

X - 

I 

X 

X 

X 

X 

X 
3 

Q P 1  

- 
X 

X 

X 

X 

X 
-I 

- 
x x x x x  

7 

X 

X 

X 

X 

X 
- 

o x x x x  

o o x x x  

o o o x x  

o o o o x  - 

Premultiplying by Q2 to annihilate the element in the a31 position yields 

Q2QlAZ 1 
- 
X 

0 

0 

0 

0 - 

Q2QlBZ1 

Postmultiplying by Z2 to annihilate b32 yields 

&,& lAZ 1 2 

The process continues with Q3 annihilating “42, Z3 annihilating b43, Q4 annihi- 
lating a53, and finishing with Z4 annihilating b54. This procedure yields a unitary 
matrix Q = Q Q Q Q , a unitary matrix Z = Z Z Z Z , an upper Hessenberg matrix 
A’ = QAZ, and an upper triangular matrix B’ = QBZ so that the first row of Q is the 
first row of Q1 as required. 

4 3 2 1  1 2 3 4  

I 
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By letting the elements of the current transformed A and B matrices be denoted 

by aij 
by the following outline: 

(1) Compute al0 and a20 by equations (29) and (30) 

(2) For k = 1, 2, 

and b e - ,  respectively, the single shift implicit QZ iteration can be summarized 
1J 

. ., n - 1, 

(a) Determine Qk to annihilate ak+l,k - 
(b) Determine z k  to annihilate bk+l,k 

The operation count for one iteration is 6n2 multiplications, 6n2 additions, and 
2n square roots. Ef the eigenvectors a r e  required and the Z matrices a r e  accumulated, 
this procedure adds 3n2 more multiplications and 3n2 more additions per iteration. 
There is no advantage in solving the transposed problem and accumulating the Q matri- 
ces  for  this iteration since it would require the same number of operations. This condi- 
tion is due to only one Z transformation being required to annihilate the B matrix 
elements as they become nonzero in this iteration whereas two Z transformations are 
required in the double shift QZ iteration. 

A s  previously noted, the iteration runs into trouble if b l l  is zero or  negligible. 

times the norm of the matrix. The infinity matrix norm is used in both the Q Z  and 
(A matrix element is defined as negligible if the element in absolute value is less than 

eo 
the combination shift QZ algorithms. The e r r o r  eo is the basic machine roundoff 
e r ror .  (See Wilkinson (ref. 12).)) The solution to this problem is to deflate from the 
top as is done in the double shift QZ. If bll 
without difficulty since unitary transformations are being used. For a 4 by 4 example, 
A and B then have the form 

is negligible, it may be set equal to zero 

A 

x x x x  

x x x x  

o x x x  

o o x x  

B 

o x x x -  

o x x x  

o o x x  

o o o x  
- 

Thus a unitary Q can be used to annihilate a21 
procedure gives a zero subdiagonal element of A 

without affecting the form of B. This 
and reduces the problem. If bl l  is 

not quite small enough to be set equal to zero, it will cause the shift to be felt only weakly 
- since the division by b l l  will overshadow (T in the equation for a10 and azo. How- 

ever, the iteration can still be used profitably in converging to a large eigenvalue at the 
top. 
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Both the double shift QZ and the single shift QZ have the property of reducing the 
problem when a negligible subdiagonal element of A is encountered. On a 6 by 6 exam- 
ple, if "32 is negligible, it can be set equal to zero and the eigenvalues of the full matrix 
problem can be found by solving for the eigenvalues of the following two diagonal systems: 

7 - 
x x l x  x x x 

x x l x  x x x 

0 O l x  x x x 

0 o l x  x x x 

0 0 ; O  x x x 

I 
I 

I 
I 

I 
I 

I 
I 

A 

- 
x x  

x x  

x x  

x x  

x x  

o x  - 

c 

X 

0 

0 

0 

0 

0 
- 

L" 0 1 0  0 x x - 

X 

0 

0 

0 

0 
* 

B 
- 
x x ; x  x x x 

0 x i x  x x x 

0 0 : x  x x x 

0 o i o  x x x 

0 0 ; o  0 x x 

0 o l o  0 0 x 

I 
I 

- - - - - - I - - - - - - - - - - - - -  

I '  
I 

I 
I 

I 
I 

But because of the simplicity of the single shift iteration, one more generalization of the 
basic QR algorithm can be applied. The property of reducing the number of transfor- 
mations by detecting two consecutive small subdiagonal elements of A can now be 
generalized. 

Consecutive Small Subdiagonals 

are both "small," but not negligible. One would like 
to develop a test  similar to the QR algorithm that would allow the iteration to start at col- 

Suppose ar,,--l and ar+l,r 

umn r, that is, the Qk matrices would affect only rows r 
A and B on a 6 by 6 example for r = 3 

A 

r , x x x x x l  

X 

E l  

0 

0 

0 

X 

X 

€2 

0 

0 

B 

x x  

x x  

x x  

o x  

0 0  

0 0  

and below. Let the form of 

where ~ l ( a 3 2 )  and ~2(a43) are "small" in some sense. 
I 
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Suppose the iteration starts at column 3 instead of column 1. Then by making the 
assumption that b33 is nonzero or  nonnegligible, one has 

- 
X 

X 

X 

X 

X 

X 
- 

"33 (T 

a10 = 5 - 

c 

X 

0 

0 

0 

0 

0 
L 

€2 
"20 = 5 

- 
X 

X 

X 

X 

X 

X 
- 

A discussion will be given later on what can be done if this assumption is false. Let the 
transformation Q3 which annihilates aZO be denoted as 

7 

X 

X 

0 

0 

0 

0 
L 

where the vector p and scalar a are found by the following set of equations: 

2 2 ~2 = aI0 + a20 

a20 

a10 * 
U =  

2 a = -  
1 + u2 

, 

(3 5) 

(3 7) 

The sign of S in equation (36) is chosen so that S and a10 have the same sign. 
Thus, Q3A and Q3B would have the forms 

X 

X 

V l  

V 2  

0 

0 

Q3* Q3B 

I 
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where 

0 91uJ = 

2e 1 
=E l  - - 1 + u2 

"20 5 "20 "20 - 

2flU 
r72 = -- 1 + u 2  

"10 * 

(3 9) 

a10 * = 

If q2 is negligible, then one is justified in starting the iteration with the third col- 
umn. One would set q2 equal to zero, apply Z3 to annihilate b43 and introduce a 
nonzero in a53, apply Q4 to annihilate and introduce a nonzero in b54, and so 
forth. Hence, an easily computable bound on q must be obtained. From equa- 
tions (36), (35), and the sign selection, one finds 

a53 
l 21 

- 
1'21- 
- 2E1U 5 ) 2 y I  51- €la20 
1 + u 2  "10 

By using equations (39) and (40), 

1'2 I ' €1'2 - - "32"43 
a33 - ~b~~ a33 - ~ 7 b ~ ~  

From equations (31), (32), and (41), 

Equations (40), (4l), and (42) require a10 to be nonzero. It is conceivable for 
a10 to be zero. If this occurs, 772 would be equal to *el and would be nonnegligible. 
Therefore, the following test  inserting the general index r ,  is used for determining the 
negligibility of q2 instead of equation (42): 

If this inequality holds, the iteration can start in column r instead of column 1. In this 
specific example, the iteration can start in column 3 instead of column 1. 

Now, consider equation (38) and t ry  to derive an expression for ql  when q2 is 
negligible 
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-E1 - E u2 + 2E1U2 2e1 1 
% = E l  - -= 1 + u2 1 + u2 

Thus, one has 

a20 
a10 * I.1 = 

From equation (35), 

5 1  20 a 
- < - 

lalo I + la201 

which yields from equation (36) and the sign selection 

1 Since q is negligible, one now has an expression for q 2 

(44) 

(4 7) 

which just involves changing signs. 

There is only one difficulty to clear up. The fact that b33 is not negligible was 
used even though the final result that is tested (eq. (43)) does not require this. E b33 
is negligible, then one may se t  b33 
setting b33 equal to zero, A and B have the forms 

equal to zero and try to perform a reduction. After 

A B 



It is desirable to annihilate 
By setting 

e2 by a Householder transformation to reduce the problem. 

"10 = "33 (4 9) 

"20 = €2 (50) 

and going through the analysis of equations (33) to  (41), F2 in this case obeys the fol- 
lowing inequality: 

If q2 is negligible, 5 
with the same result 

can be found through the same analysis as equations (44) to (48) 1 

Thus, if 1'31 is negligible, the sign on el can be changed, e2 annihilated, and the 

problem reduced. 

and 'r+l,r In summary, the algorithm tests the subdiagonal elements ar,r-l 
(r = n - 1,n-2, . . ., 2) each iteration for the validity of equation (43) if 
ligible, and equation (43) with larr - ab,, I replaced by I a,, I if brr is negligible. 
Suppose equation (43) is valid for subdiagonal elements and ai+l,i. The algo- 
rithm then proceeds according to the negligibility of bii. If bii is not negligible, the 
iteration s ta r t s  a column i. If bii is negligible, the matrix problem is reduced into 
two smaller matrix problems. 

brr is nonneg- 

Step 2 of Combination Shift QZ Algorithm 

The second step of the combination shift  QZ algorithm can now be stated; that is, 
reduce A to quasi-triangular form while keeping B in upper 
triangular form by using a combination of the double shift QZ 
and the single shift implicit QZ. 

The type of iteration used to determine the next i terates depends on the type of 
shifts computed. By using equation (22), the algorithm determines whether the shifts 
are real or complex. If they are complex, a double shift QZ iteration is performed as 
explained earlier. If they are real, a single shift implicit QZ iteration is performed by 
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using the shift which is closest to the value am, - where ann and bnn are the n,n 

elements of the current transformed A and B matrices, respectively. 
bnn 

The reasoning behind the selection of this step is obvious. If the shifts are complex, 
then the calculation remains in real arithmetic by the double shift and is probably con- 
verging to complex eigenvalues. If the shifts are real, then the iteration is probably con- 

ann verging to at least one real eigenvalue which will emerge as - 
bnn ' 

Since the double shift QZ may be used, it is still an advantage to solve the trans- 
posed problem and accumulate the Q transformations. This method wil l  insure only 
having to accumulate one Householder reflection per iteration. 

THEORETICAL COMPARISON OF THE COMBINATION SHIFT QZ 

AND THE QZ ITERATIONS 

One important and interesting form of comparison is operation count (only multi- 
plications and divisions of the highest order of n are stated here). The operation count 
for one double shift QZ iteration is 13n2, whereas the operation count for  one combina- 
tion shift QZ iteration depends on the type of shifts encountered. If the shifts are com- 
plex, then the count is the same as that of the double shift. If the shifts are real, then 
one shift is performed and the iteration requires 6112 operations. (One should note that 
there are a few more logical statements and multiplications in the combination shift itera- 
tion because of the shift-type determination, but these are of order unity per iteration.) 

To  emphasize what happens in  the real case, suppose the two algorithms are con- 
verging to a real eigenvalue and the shifts in both the double shift QZ and the combination 
shift QZ are real. The combination shift QZ would iterate with 6n2 operations, obtain 
a new shift estimate, iterate again with 6n2 operations, obtain a new shift estimate, and 
so on until convergence. The double shift QZ would use both shifts and iterate with 13n2 
operations, obtain two new shift estimates, iterate again with 13112 operations, and so 
on until convergence. Thus, the combination shift QZ can perform two iterations with a 
better shift estimate for the second iteration with n2 fewer operations than the double 
shift QZ. Consequently, when trying to converge to a real eigenvalue, it appears that the 
combination shift would save on the number of operations per two shifts as well as possi- 
bly on the number of iterations because of the improved shift estimates. When trying to 
converge to a complex eigenvalue pair, the shifts should be complex and the two algorithms 
should be roughly equivalent. One would then expect that the combination shift QZ itera- 
tion would be faster than the double shift QZ iteration when real eigenvalues are present, 
but would at worst (all complex eigenvalues) be only slightly slower. One would also 
expect that the savings due to the combination shift would be somewhat proportional to 



the number of real  eigenvalues found. These expectations are confirmed by the numeri- 
cal results presented later. 

The numerical tests also indicate that on large matrices, for example of order 50, 
time and iterations are generally gained or lost in computing the first 50 percent of the 
eigenvalues. There a r e  two reasons for this gain or loss. First, the size of the matrix 
is reduced as an eigenvalue o r  an eigenvalue pair is found. Thus, there a r e  more opera- 
tions associated with finding the earlier eigenvalues, and an iteration saved at the begin- 
ning is worth more than an iteration saved at the end. Second, the earlier iterations help 
the later iterations by orienting the eigenvalues in approximate order and giving better 
estimates for the shifts. (This is also the reason that extra early iterations are not com- 
pletely wasted.) In large matrices, the average rate of determining eigenvalues is gen- 
erally one eigenvalue per two shift iterations (one double shift or two single shifts) or 
better after the first 50 percent of the eigenvalues a r e  found. It would then appear that 
the combination shift QZ algorithm would benefit from all the real eigenvalues being in  
a position to be found first. This advantage is somewhat offset by the property discussed 
in the next paragraph. 

Orientation of the eigenvalues plays a further role in determining the relative merits 
of the combination shift  iteration. If a real  eigenvalue would normally be found between 
two complex pairs  of eigenvalues, the combination shift would operate more efficiently 
than the QZ since it has the capability of finding just one real  eigenvalue. The double 
shift algorithm would have to disorder the eigenvalues in order to make use of both shifts 
in the iteration, or would have to perform an iteration with one shift which does not give 
immediate help in extracting the eigenvalues. To illustrate the point, consider the fol- 
lowing example: 

B 

f ;] 
The eigenvalues of Ax = XBx are -3 ,  - f ai. The two shifts al and a2 used in the 2 2  
double shift are -2  and 0. The shift -2 can be used to good advantage in finding the eigen- 
value -3 ,  but the shift 0 does not provide much help in converging to the eigenvalues. The 
combination shift would iterate by using a shift of -2 and would obtain a new shift for the 
next iteration which should be an even closer approximation to -3 .  This property of the 

- algorithms indicates that the combination shift should operate more efficiently than the 
QZ when the real eigenvalues a r e  not bunched together. But when the real  eigenvalues 
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a r e  bunched, both shifts in the double shift could be used advantageously and the savings 
of the combination shift QZ is not as large. 

As previously mentioned, the simplicity of the single shift iteration allows one to 
check for  consecutive small subdiagonals. Of course, the time and operations saved by 
utilizing this property is a function of the number of consecutive small subdiagonals 
detected by the algorithm and the position of these small elements along the subdiago- 
nal. In the 180 test  cases presented in this paper, consecutive small subdiagonals were 
detected on the average of once every 8.7 single shift iterations. Since the double shift 
iteration does not have this capability without consuming considerably more time, this is 
a positive feature for the single shift iteration. 

The single shift iteration had to deal with the problem of a possible negligible b l l  
element. This problem was  solved by a deflation from the top; that is, finding an infinite 
eigenvalue and reducing the order of the matrix problem by one. If bll was  small but 
not negligible, then an  iteration was  performed with a shift essentially equal to zero. 
This shift was useful in finding the large eigenvalue and thus deflating from the top, but 
did not provide much help in converging to the stable eigenvalue and deflating at the bot- 
tom. The double shift iteration has the same problem with b l l  and the additional prob- 
lem of a negligible or  almost negligible b22. The double shift iteration cannot take 
advantage of a negligible b22 and is forced to perform an iteration with a shift  essen- 
tially equal to zero when b22 is negligible as well as almost negligible. Hence, the 
combination shift QZ algorithm would not be as likely to perform an iteration which does 
not help in converging to a stable eigenvalue as the QZ algorithm. 

Since both iterations involve only unitary transformations, they a r e  both stable and 
well defined and, as expected, the accuracies of the two different iteration strategies are 
roughly equivalent. 

NUMERICAL RESULTS 

In order to determine the relative merits of the combination shift QZ algorithm, 
numerous test  cases were run on the Control Data Corporation (CDC) 6600 computers 
at Langley Research Center. The results of these test cases were compared with the 
results of the same test cases by using Moler and Stewart's QZ algorithm. The QZ 
algorithm used was  a FORTRAN computer code supplied by Dr.  Cleve Moler of Univer- 
sity of New Mexico. For  the combination shift QZ algorithm, only the subroutine of this 
code involving the iteration (that is, step 2 of the algorithm) was modified. The test 
cases were divided into six categories depending on the percentage of real  eigenvalues 
possessed by the test  case. The appendix gives the details on the generation of the 
matrices fo r  these tests. Iteration times for the different test cases a r e  given in 
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tables I to VI. Operation count and total algorithm time for category I a r e  given in 
tables VI1 and VIII, respectively. 

The first category is one which is often found in the physical sciences; that is, the 
generalized eigenproblem with all real  eigenvalues. Fo r  all the test cases in this cate- 
gory, A is a symmetric matrix and B is a symmetric, positive definite, nearly sin- 
gular matrix. For all the test cases in this category except 1-6, A is also nearly 
singular. Cases 1-1, 1-2, 1-3, and 1-6 test the algorithms on problems which consist 
mainly of stable eigenvalues. The problem has two unstable eigenvalues, in test cases 
1-1, 1-2, and 1-3 and three unstable eigenvalues in test cases 1-6. Cases 1-4 and 1-5 test 
the algorithms on problems consisting of an approxim'ately equal number of stable and 
unstable eigenvalues. Most of the stable eigenvalues in these two cases are nearly zero. 
Table I reports the percentage of the QZ iteration time required by the combination shift 
QZ iteration. For  the 30 test cases tried, the average time saved was  over 35 percent 
and the deviation from this time was small. However, there was a definite trend toward 
larger savings on smaller matrices. To give an operation count comparison, a counter 
was inserted into both the combination shift QZ iteration and the QZ iteration to count all 
multiplications and divisions of order unity and above per iteration. Table VI1 reports 
the result of th i s  comparison. A s  one would expect, results similar to table I are obtained 
with slightly larger percentages saved. Table VlII reports on the time comparisons of 
the complete algorithms. Since the algorithms a r e  identical except for the iteration step, 
the results a r e  also similar to those reported for the iteration time except with the per- 
centages closer to 100, as expected. 

The second category is the one with the test cases which have 80 percent real eigen- 
values. Table I1 reports the iteration time comparison for th i s  category. The test 
cases 11- 1 have complex eigenvalues with larger magnitudes than the real eigenvalues. 
The test cases 11-2 a r e  just the opposite with the complex eigenvalues having smaller 
magnitudes than the real  eigenvalues. Test cases 11-3 and 11-4 a r e  problems which have 
each complex conjugate pair of eigenvalues isolated in magnitude; that is, if the eigenval- 
ues were ordered by magnitude, there would be at least one real eigenvalue between every 
complex conjugate pair. Test  cases 11-5 and 11-6 a r e  problems which have the complex 
eigenvalues grouped together by magnitude; that is, if the eigenvalues were ordered by 
magnitude, there would be more than one complex conjugate pair between the real  eigen- 
values. For the 30 test cases tried in this category, the average time saved in the itera- 
tion section of the algorithm is over 25 percent. Again, there is a trend for saving more 
on the smaller matrices. Also, the deviations are larger on the smaller matrices because 
of the larger effect of just one more or  less iteration. 

The third category contains the test cases with 60 percent real  eigenvalues. 
Table ID reports on the iteration time comparison between the QZ and the combination 
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shift QZ. Again, test cases 111-1 have complex eigenvalues with larger magnitudes, III-2 
has complex eigenvalues with smaller magnitudes, 111-3 and 111-4 have complex eigenval- 
ues isolated, and 111-5 and III-6 have complex eigenvalues grouped. For the 30 test cases 
tried in this category, the average iteration time saved is almost 30 percent. 

Table IV and table V report the results of the fourth and fifth category, respectively. 
The fourth category contains matrices with 40 percent of the eigenvalues rea l  and the fifth 
category with 20 percent of the eigenvalues real. Again, test cases IV-1, V-1, IV-2, and 
V-2 have the same property as the respective cases in the two previous categories. Test 
cases IV-3, V-3, IV-4, V-4, IV-5, V-5, IV-6, and V-6 have their real eigenvalues ordered 
like the complex eigenvalues a r e  ordered in the respective cases of categories I1 and 111. 
In the fourth category, a savings of almost 20 percent is realized in the iteration time. 
The average iteration time saved in the fifth category is 13 percent. 

The sixth and last category is that of the all complex eigenvalue cases.  Table VI 
reports the results of this category. Cases VI-1 and VI-2 test  the algorithms on prob- 
lems which consist mainly of stable purely imaginary eigenvalues. Cases VI-3 and VI-4 
test the algorithms on problems which have eigenvalues with small and large imaginary 
parts relative to the real  part  and eigenvalues with real and imaginary par ts  of the same 
order of magnitude. Cases VI-5 and VI-6 test the algorithms on problems consisting 
of an approximately equal number of stable and unstable purely imaginary eigenvalues. 
Most of the stable eigenvalues in these two cases a r e  nearly zero. An explanation for 
the savings in this category is that some real  shifts were encountered during the itera- 
tion and the combination shift QZ algorithm returned to the shift determination strategy 
quicker, and thus avoided as many real shifts as the QZ algorithm. Also, small real 
shifts on the nearly zero complex eigenvalues a r e  used effectively. The average savings 
on test cases in  this category is over 5 percent. 

In all the test  cases presented in this paper, the stable eigenvalues from the two 
algorithms a r e  exact to approximately 12 significant figures. Neither algorithm has 
shown consistently more accuracy than the other. Also, the unstable eigenvalues have 
been determined as accurately as possible by both algorithms. To determine the accu- 
racy of the unstable eigenvalues, one must check the accuracy of ai and pi, the diag- 
onal elements of the resulting triangular A and B matrices, respectively. The ai 
and pi are accurate up to a perturbation of order llA1leo and 1 IBI1eO, respectively. 
For example, if the norms of the original matrices were of order unity and ai and pi 
were of order 10-13, then the eigenvalue A i  would have approximately one accurate digit 
even though h i  would be of order unity itself. To illustrate the point even further, test 
cases 1-4 and 1-5 for the 50 by 50 matrices a r e  examples of eigenproblems which theoret- 
ically have all real  eigenvalues, but both algorithms found some complex eigenvalues 
among the unstable eigenvalues. But, as expected, the imaginary parts of these eigen- 
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values had zero accuracy. Complex eigenvalues were the result of the nonpreserving- 
symmetry property which both algorithms possess. 

By looking at all the test  cases, one can identify some definite trends concerning 

(1) The more real eigenvalues a problem has, the more one can expect to save by 

individual problems. They a r e  as follows: 

using the combination shift QZ algorithm. Figure 1 gives a graphic view of this tendency. 
It shows a graph of the percentage of the QZ iteration time used by the combination shift 
QZ iteration plotted against the percentage of real eigenvalues. One standard deviation 
band about the average is also shown. 

(2) One can expect a larger savings on smaller matrices by using the combination 
shift QZ than on the larger matrices. This tendency is noted in practically all the test 
cases presented. Figure 2 gives a graphic view of the average and one standard devia- 
tion band of this trend. Also, as noted earlier,  the standard deviation is larger for small 
matrices because of the greater effect of one iteration and the "nonsettling" of the eigen- 
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Figure 1. - I t e r a t i o n  t ime comparison by percentage of real eigenvalues.  
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Figure 2.- I t e r a t i o n  t ime comparison by s i z e  of  matr ix .  

values; that is, because of the lack of enough previous iterations, the eigenvalues have not 
settled down to a specified location o r  order.  

(3) The standard deviation tends to be larger for  the cases which have a more equal 
distribution of real and complex eigenvalues. This difference may be attributed to a 
higher rate of reordering real  and complex eigenvalues so that both shifts in the 
Q Z  algorithm are used effectively. 

(4) If the real eigenvalues have smaller magnitudes than the complex eigenvalues, 
one can expect a greater savings by using the combination shift QZ since the smaller 
eigenvalues tend to be found first. This tendency supports the comments presented in 
the previous section on the theoretical comparison. 

The results presented in  the tables correspond to eigenvalue computation only. In 
the test cases which have been tried, approximately the same percentages resulted when 
the eigenvector calculation was added. The eigenvectors were calculated as they were in 
Moler and Stewart's algorithm and not by the preferred method suggested by &&man. 
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As does the QZ algorithm, the combination shift QZ algorithm handles the ?!ill- 
disposed" problem when det(A - AB) vanishes identically, that is, when any h can be 
considered as an eigenvalue. This case appears with an "essentially" zero diagonal ele- 
ment on the final triangular matrices at the same relative location. 

CONCLUDING REMARKS 

The algorithm presented in this paper, called the combination shift  Q Z  algorithm, 
solves the generalized eigenvalue problem. It should be used when both matrices a r e  
singular or  nearly singular and tests indicate it is particularly effective on eigenprob- 
lems which have a large percentage of real eigenvalues. Based on the results presented 
in this paper, it should be preferred over existing algorithms which attempt to solve this 
class of eigenproblems. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., May 7, 1973. 
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APPENDIX 

TEST CASES 

Test cases were generated so that they fell into six basic categories. These cate- 
gories were pairs of matrices which in the generalized eigenproblem sense have: 

Category I - 100 percent real eigenvalues 

Category I1 - 80 percent real eigenvalues 

Category I11 - 60 percent real eigenvalues 

Category IV - 40 percent real eigenvalues 

Category V - 20 percent real  eigenvalues 

Category VI - 0 percent real  eigenvalues 

Within each category, six matrices were generated as a function of the matrix size N. 

To help present the details on the generation of the test cases, several matrices 
need to be defined. First, three orthogonal matrices and a tridiagonal matrix a r e  as 
follows: 

i j  7~ symmetric matrix whose i j  element is sin - 
N + l  

u 

T matrix with diagonal equal to 10 and both superdiagonals and subdiagonals 
equal to 4 

V orthogonal eigenvector matrix of T 

P orthogonal eigenvector matrix of a symmetric random number matrix with 
random numbers uniformly distributed in the interval [-5., 5.1 

Next, several diagonal and block diagonal matrices, which a r e  functions of the variables 
indicated and which define the eigenvalues, a r e  defined as follows: 

D1(N) = diag{l, 3, 5, . . ., N - 1; 

-N + 6, -N + 8, -N + 10, . . ., -4, -2) 

D2(N) = diagcl, 2, 3, . . ., N - 2; 
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APPENDIX - Continued 

(4)10-12; 

1 , 2 , 3 ,  . . E- 1> 
* ’  2 

D4(N) = d i a g b ,  5,  7; 4, 5,  6, * ” 2  E+ 1; 10-12, 10-12, 10-12, . . * 7  10-19 
L 

D5(N,k) = diag 

. . .  

r 

L 

1 kN 5 - = a- 1, - - 2, . . ., 3; 10-10, 10-11 ’ 5 ’  5 5 “‘“I 0 

-(y+ 2) 0 

r o  

D8(N) =diag(lO-ll, 10-lo; 1, 1, 1, . . - 7  1> 
, 

- -  kN 2 
5 

0 

1°-’1 0 

0 

-10-11 

J 
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APPENDIX - Continued 

D9(N,k,Z,m,q) = diag 3, 4, 5, . . ., k; 

Dlo(N) = diag(1, 1, 1, . . ., 1; l O - l l >  

. . . [  -(k - 1) ‘ ~ ~ ; k + 1 , k + 2 , k + 3 , .  . . , Z ;  

(Equations continued on next page) 
I 
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APPENDIX - Continued 

; m + l , m  + 2 , m  + 3 , .  . . , q ;  
0 

. . .  
i-(m - 1) 

10- 10 1 .oooooooo 1 2. 1.0001 

, [  - 1 .oooooooo 1 0 l 9  [ -1.0001 0 

2. 

(Equations continued on next page) 
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APPENDIX - Continued 

7. 

[ ~ ~ .  0, 

r 
0 k +  5 0 k + 7  0 t.. 5) 0 1, [ (k+  7) 0 ]~ ' [-(N - 1) 

N -  0 I 
10-10 

0 ~, 

0 

Some of the block diagonal matrices a r e  constructed from block diagonal submatrices of 
dimension 10. They are as follows: 

~ 11, [ E1(N) = diag 10- N - 2, 
-(N - 3) 

32 



APPENDIX - Continued 

0 N - 10k - 3 

- 10k - 3) 0 
E2(N,k) = diag N - 10k, N - 10k - 1, N - 10k - 2, I 
g3 = diag 10, 9, 8 ,  i 

r 

5 , 4 ,  3, 10-10, 10-11 I i ] ,  0 ] 0 

-7  

E5(N,k) = diag N - 10k, N - 10k - 1, i 
- 

- 

0 N - 10k - 2 

-(N - 10k - 2) 0 

0 

0 
N - 10k - 4, N - 10k - 5, 

N - 10k - 8, N - 10k - 9 

h 
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APPENDIX - Continued 

0 8 

-8 0 
, 6, 5, ~~, 1 0 - l ~  

E7(N) = d i a ~ ~ ~ ~  10-10 1, N - 2, N - 3,  [ -(N - 4) "d 1, 
N - 8  

0 
N - 6 , N -  7, 

E8(N,k) = diag 

B9 = diag 

I 
r ii. 0 lok) 

ail N - 10k - 2, N - 10k - 3,  

L 

, N - 10k - 6, N - 1Ok - 7,  
0 N - 10k - 4 

- 10k - 4) 0 

N - l o k - ~  0 

0 

- 10k - 8) 

r 

9 4, 3, 

10-10 

-2 10- 2~ 11 

I 
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N - 7 , [  -(N - 8) 

0 
Ell(N,k) = diag 

0 

-(N - 10k - 5) 

N - 8  

0 

- lok1 , N - 10k - 2, 1 

~i -(N O - 5) 

0 

O I  
1-(N - 10k - 3) 

0 
, N - 10k - 7, 

- 10k - 8) O J  

5 - 
D12=diag[o - 10 :p1., 

~~, ~5 0 

The  test  cases can  now be defined as 

9 3,  

J 

N - 5  

0 

N - 10k - 3 

0 

N = 10, 20, 30, 40, 50 

N = 10, 20, 30, 40, 50 

1-1: A = UT D&N) u 

A = PT D ~ ( N )  P 

B = UT DZ(N) U 

1-2: 

B = PT DZ(N) P 

N = 10, 20, 30, 40, 50 
1-3: A = VT D1(N) V 

B = VT D2(N) V 
h 
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APPENDIX - Continued 

N = 10, 20, 30, 40, 50 
B = UT D4(N) U 

1-4: 

1-5: A = VT D3(N) V 

B = VT D4(N) V 
N = 10, 20, 30, 40, 50 

1-6: A = Symmetric random number matrix with random numbers uniformly 
distributed in the interval [1-10., 103 

B = CTC where the first N - 3 rows of C a r e  random numbers 
uniformly distributed in the interval E5., 53 and the last three rows 
are linear combinations of the preceding rows with a perturbation on 
the order of added to each element in these rows. 

N = 10, 20, 30, 40, 50 

N = 10, 20, 30, 40, 50 

11- 1 : A = T D5(N,4) U 

B = T D6(N) U 

11- 2 : A = T D~(N, I )  u 
B = T Dg(N) U 

II-3: 
N =  10 

N = 20 

N = 30 

N = 40 

N = 50 

A = T El( l0)  U i B = T Dio(1O) U 

\ 
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APPENDIX - Continued 

11-4: 

II- 5: 

II-6: 

N = 10 

N = 20 

N = 30 

N = 40 

N = 50 

N = 10 

N = 20 

N = 30 

N = 40 

N = 50 

Let 

A = T E 3 U  

B = T ~ ~ ( 1 0 )  u 

= T diag{B2(20, 0), n3 )  U 

B = T ~ ~ ( 2 0 )  u 

A = T Dg(10, 4, 6, 10, -) U 

B = T D1O(lO) U 

1 B = T DlO(20) U 

A = T Dg(20, 5, 9, 20, -'I U 

= T Dg(30, 6, 1 2 ,  30, -) U 

= T Dlo(3O) U 

= T D9(40, 4, I O ,  18, 20) U 

= T D10(40) U 

= T Dg(50, 5, 11, 21, 23) U 

= T Dio(50) U 

A' = A of test case 11-5 

B' = B of test case 11-5 

A = U T-1 A' U-l T 

B = U T- l  B' U-l T 
N = 10, 20, 30, 40, 50 
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APPENDIX - Continued 

111- 1: 

111- 2 : 

111- 3 : 

I A = T D5(N,3) U 

B = T Dg(N) U 

A = T D7(N,2) U 

B = T Dg(N) U 

N = 10 

N = 20 

N = 30 

N = 40 

N = 50 

111-4: 
N = 10 

N = 20 

N = 30 

N = 10, 20, 30, 40, 50 

N = 10, 20, 30, 40, 50 
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APPENDIX - Continued 

III- 5: 

III- 6 : 

m- 1: 

rv-2: 

Iv-3: 

N = 40 

f~ = T ~ ~ ( 1 0 ,  5, 9, io, -1 u 
N = 10 

(B = T Dio(10) U 

A = T Dg(20, '7, 15, 20, -1 U 

B = T Dio(20) U 
N = 20 

N = 30 

N = 40 

N = 50 

N = 10 

= T Dg(30, 5, 13, 21, 25) U 

B = T Dio(30) U 

= T Dg(40, 8, 16, 24, 32) U 

= T Dlo(4O) U 

= T Dg(50, 7, 15, 27, 39) U 

B = T Dio(50) U 

Let A' = A of test case III-5 

B' = B of test case III-5 

B = U T-1 B' U-1 T 

= T rji(lO) U 

= T Dio(10) U 

N = 10, 20, 30, 40, 50 

N = 10, 20, 30, 40, 50 

N = 10, 20, 30, 40, 50 
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APPENDIX - Continued 

N = 20 

N = 30 

N = 40 

N = 50 

Iv-4: 
N = 10 

N = 20 

N = 30 

N = 40 

N = 50 

w- 5: 
N = 10 

A = T Dg(10, 3, 9, 10, -) U 

B = T DlO(10) U 



APPENDIX - Continued 

IV-6: 

N = 20 

N = 30 

N = 40 

A = T Dg(20, 3, 9, 13, 19) U 1 B = T Dio(20) U 

i B = T Dio(30) U 

A = T Dg(30, 6, 16, 20, 28) U 

= T Dg(40, 6, 18, 22, 34) U 

B = T D1o(40) U 

A = T Dg(50, 10, 24, 30, 46) U 

B = T Dlo(50) U 
N = 50 

v- 1: 

v-2: 

v-3: 
N = 10 

N = 20 

N = 30 

Let A' = A of test case IV-5 

B' = B of test case IV-5 

A = U T-1 A' U-1 T 

B = u T-1 B' U-1 T 

A = T D5(N,l) U 

B = T Dg(N) U 

A = T D7(N,4) U 

B = T D8(N) U 

A = T Elo(10) U 

B = T DlO(lO) U 

N = 10, 20, 30, 40, 50 

N = 10, 20, 30, 40, 50 

N = 10, 20, 30, 40, 50 

A = T diag Dl0(20), Bll(20, l)} U { 

{ 

B = T D10(20) U 

A = T diag Dlo(3O), 811(30, l) ,  D11(30, 2) 

B = T Dio(30) U 

i 

, 
41 



APPENDM - Continued 

N = 50 

v-4: 
N = 10 

N = 20 

N = 30 

N = 40 

N = 50 

v- 5: 
N = 10 

N = 20 

N = 30 

N = 40 

A = T 512 U 

B = T ~ ~ ( 1 0 )  u 

A = T D11(10, 6, 8, 10, -) U 

B = T Dlo(10) U 

A = T D11(2O, 6, 10, 20, -) U 

B = T Dio(20) U 

A = T D11(30, 8, 14, 30, -) U 

B = T Dio(30) U 

A = T Dii(40, 6, 10, 20, 24) U 

B = T ]D10(40) U 



APPENDIX - Concluded 

V-6: 

VI-1: 

VI- 2 : 

VI- 3 : 

VI-4: 

VI- 5 : 

VI- 6 : 

N = 50 
A = T D11(50, I O ,  16, 24, 28) U 

B = T Dio(50) U 

Let A' = A of test case V-5 

B' = B of test case V-5 

N = 10, 20, 30, 40, 50 
A = u ~ - 1  A' U-1 T 

B = u T-1 B' U-1 T 

N = 10, 20, 30, 40, 50 
B = T Dg(N) U 

N = 10, 20, 30, 40, 50 
B = U D6(N) T 

N = 10, 20, 30, 40, 50 
B = T Dlo(N) U 

N = 10, 20, 30, 40, 50 

Let m = 2 1  where [r] means the greatest integer not 

A = T D14(N,m) U 

B = T D15(N,m) U 

greater than r 

Let m = m of test case VI-5 

A = U D14(N,m) T 

B = U D15(N,m) T 
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TABLE 1.- ITERATION TIME COMPARISON FOR CASES WITH 

ALL REAL EIGENVALUES 

Test case 

I- 1 
I- 2 
I- 3 
I- 4 
I- 5 
I- 6 

Column average . . . 
Column standard 

deviation . . . . . . 

Row 
shift QZ for matrix size of - Row standard 

deviation 

Percent of QZ used by combination 

average 
N = l O  N = 2 0  N = 3 0  N = 4 0  N = 5 0  

70.5 61.9 58.8 68.0 65.2 64.9 3.9 
44.9 52.1 67.5 65.3 65.6 59.1 8.8 
55.8 55.4 66.2 68.0 65.0 62.1 5.1 
62.8 64.7 62.8 67.2 68.3 65.2 2.3 
62.8 66.1 61.9 66.5 70.1 65.5 2.4 
69.0 72.1 73.5 69.8 73.8 71.6 3.1 

61.0 62.1 65.1 67.5 68.0 

8.4 6.2 4.9 1.6 3.2 
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TABLE 11.- ITERATION TIME COMPARISON FOR CASES WITH 

80 PERCENT REAL EIGENVALUES 

Percent of QZ used by combination 
shift QZ for matrix size of - ROW 

. average Test case 
N = l O  N = 2 0  N = 3 0  N = 4 0  N = 5 0  

11- 1 58.0 70.7 78.6 77.6 77.9 72.6 
11- 2 104.7 97.7 80.9 88.1 74.6 89.2 
11- 3 60.5 63.6 69.8 70.3 76.5 68.1 
II- 4 60.5 69.3 71.9 73.8 76.8 70.5 
11- 5 70.7 62.0 70.0 78.0 69.0 69.9 
11- 6 65.7 85.9 85.6 74.2 85.2 79.3 

~ 

Column average . . .  70.0 74.9 76.1 77.0 76.7 
Column standard 

deviation . . . . . .  12.7 12.6 6.4 5.6 4.2 
f 
Average percentage for these cases . . . . . . . . . . . . . . . . . . . . . . .  74.9 
Standard deviation for these cases . . . . . . . . . . . . . . . . . . . . . . . .  10.7 

ROW 
standard 
deviation 

7.4 
10.9 
6.1 
5 .O 
5.6 
8.3 



TABLE 111.- ITERATION TlME COMPARISON FOR CASES WITH 

60 PERCENT REAL EIGENVALUES 

Percent of Q Z  used by combination 
shift Q Z  for matrix size of - 

N = l O  N = 2 0  N = 3 0  N = 4 0  N = 5 0  

60.0 71.2 71.3 82.0 84.9 
104.4 94.2 92.4 77.7 77.8 

58.3 65.9 72.4 66.5 71.6 
58.3 65.9 66.8 61.8 71.1 
46.2 70.5 70.3 73.3 78.9 
63.2 49.5 52.1 65.0 77.9 
- 

Test case Row 
average 

73.9 
89.3 
66.9 
64.8 
67.8 
61.5 

III- 1 
III- 2 
III- 3 
III- 4 
III- 5 
III- 6 

18.2 

Columnaverage . . .  
Column standard 

deviation . . . . . .  13.3 11.7 6.7 5.2 

65.1 1 69.5 1 70.9 I 71.1 1 77.0 11 

Row 
standard 
deviation 

8.7 
10.3 
5.6 
4.1 

11.5 
10.4 

Average percentage for these cases . . . . . . . . . . . . . . . . . . . . . . .  70.7 
Standard deviation for these cases . . . . . . . . . . . . . . . . . . . . . . . .  12.7 
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BLE IV.- ITERATION TIME COMPARISON FOR CASES WITH 

Percent of Q Z  used by combination 
shift QZ for matrix size of - Row 

average Test case 
N = l O  N = 2 0  N = 3 0  N = 4 0  N = 5 0  

-1 60.0 60.1 70.4 84.4 81.7 71 -3 
N- 2 112.5 118.8 94.8 94.7 90.4 102.2 

-3 66.7 59.8 73.2 73.1 80.4 70.6 
-4 61.3 73.5 78.8 75.8 79.9 73.9 

Iv- 5 78.0 84.7 76.9 82.8 77.0 79.9 
IV- 6 101.6 97.0 89.0 89.9 30.7 93.6 

Column average . . .  80.0 82.3 80.5 83.5 83.4 
Column standard 

deviation . . . . . .  20.3 21.0 8.8 6.9 4.4 
r 

40 PERCENT REAL EIGENVALUES 

Row 
standard 
deviation 

10.5 
11.6 
7.3 
6.2 
2.7 
5.6 

Average percentage for these cases . . . . . . . . . . . . . . . . . . . . . . . .  81.9 
Standard deviation for these cases . . . . . . . . . . . . . . . . . . . . . . . .  14.5 



TABLE V.- ITERATION TIME COMPARLSON FOR CASES WITH 

Row 
average 

20 PERCENT REAL EIGENVALUES 

Row 
standard 

eviation d N = l O  

81.4 
100.0 
96.8 
91.8 
88.9 
41.7 

v- 1 
v-2 
v - 3  
v - 4  
v - 5  
V- 6 

N = 2 0  

91.4 
107.9 
85.3 
87.4 
66.4 
64.8 

Percent of QZ used by combination 
shift QZ for matrix size of - 

84.6 
102.6 
87 .O 
86.7 
83.6 
77.1 

4.7 
3.1 
5.4 
4.2 
9.7 

21.5 

~ Column standard 

N = 30 

79.2 
104.2 
82.4 
86 .O 
84.3 
83.8 

86.7 

7.6 

N = 40 

83.7 
100.5 
86.1 
87.0 
83.6 
97.0 

N = 50 

87.4 
100.4 
84.5 
81.5 
94.9 
98.3 

89.6 

7.3 

91.2 

6.7 
I 

Average percentage for these cases . . . . . . . . . . . . . . . . . . . . . . .  87.0 
Standard deviation for these cases . . . . . . . . . . . . . . . . . . . . . . . .  12.4 

, 
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TABLE V1.- ITERATION TIME COMPARISON FOR CASES WITH 

Test case 

VI- 1 
VI- 2 
VI- 3 
VI- 4 
VI- 5 
VI- 6 

Column average . . .  
Column standard 

deviation . . . . . .  

ALL COMPLEX EIGENVALUES 

Percent of QZ used by combination 
shift QZ for matrix size of - 

N = l O  N = 2 0  N = 3 0  

102.4 101.1 101.1 
82.9 88.3 92.5 
85.0 100.8 94.8 

102.4 89.5 99.1 
100.0 101.1 101.0 
75.6 91.8 75.2 

91.4 95.4 94.0 

10.5 6.2 8.4 

N = 4 0  

100.1 
95.0 
95.3 
95.4 

100.9 
87.1 

N = 5 0  

99.5 
88.3 
96.2 
98.8 

100.6 
95.7 

5.2 1 4.4 

Row 
average 

100.8 
89.4 
94.4 
97.0 

100.7 
85.1 

Row 
standard 
deviation 

3 .O 
4.1 
5.5 
5.2 
2 .o 
8.2 

Standard deviation for these cases . . . . . . . . . . . . . . . . . . . . . . . .  7.2 



TABLE VI1.- OPERATION COUNT COMPARISON FOR CASES WITH 

ALL REAL EIGENVALUES 

I- 1 
I- 2 
I- 3 
I- 4 
I- 5 
I- 6 

Percent of Q Z  used by combination 
shift Q Z  for matrix size of - Test case 

N =  10 N=20 

63.0 58.9 
39.6 48.9 
49.5 52.2 
56.1 60.6 
56.1 62.1 
60.2 68.5 

65.9 67.1 

N = 30 

68.4 73.2 

56.7 
65.3 
64.3 
59.8 
58.7 
71.5 I 68.4 

62 .? 
t 

Column average . . . . 54.1 58.5 

64.1 

N = 50 

64.5 
66.4 
68.2 

average 

62.1 
56.7 
59.5 
61.4 
61.9 

Average percentage for these cases . . . . . . . . . . . . . . . . . . . 61.7 

, 
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TABLE VII1.- ALGORITHM TIME COMPARISON FOR CASES WITH 

ALL REAL EIGENVALUES 

N = 2 O  

77.6 
71.4 
73.9 
83.1 
84.0 
83.8 

78.9 

Percent of QZ used by combination 
shift QZ for matrix size of - Test case 

N = 3 O  N = 4 0  N = 5 0  

76.3 82.5 81.2 
81.8 80.7 81.5 
81.3 82.5 81.2 
84.7 88.6 89.5 
83.9 88.2 90.5 
84.9 83.2 85.3 

82.2 84.3 84.8 

I- 1 
I- 2 
I- 3 
1-4 
I- 5 
I- 6 

Column average . . . . 

N = 10 

82.7 
65.0 
70.7 
79.5 
77.0 
79.5 

75.7 

Row 
average 

80.1 
76.1 
77.9 
85.1 
84.7 
83.3 

Average percentage for these cases . . . . . . . . . . . . . . . . . , . 81.2 I 

, 
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